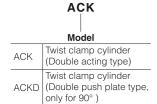
Dg-Pnetic®

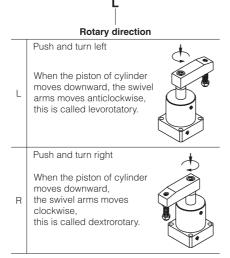
Symbol

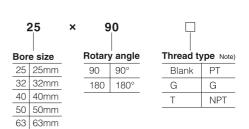
Product feature

- The material of seals guarantees the reliable performance of the cylinder that is used under various conditions.
- 2. Three-slot guide structure leads to high guide precision.
- 3. There are single and double side clamping fingers can be selected (90°).
- 4. Levorotatory and dextrorotary are available; 90° and 180°.
- 5. The material of piston rod is made from special alloy steel, which has longer life after heat treatment.

Specifications

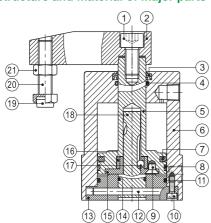

Bore size(mm)	25	32	40	50	63					
Acting type	cting type Double acting									
Fluid	Air (to be filtered by 40µm filter element)									
Operating pressure	0.15~1.0MPa(22~145psi)									
Proof pressure	1.5MPa(215psi)									
Temperature (℃)	-20~70									
Speed range (mm/s)	50~200									
Stroke tolerance	+1.0 0									
Rotary angle tolerance	±1.5°									
Cushion type Note1)	No cushion									
Port size Note 2)	8"									


Note: 1. If there is no buffering device, exhaust throttle shall be added to achieve buffering effect. 2. PT thread, G thread and NPT thread are available.


Stroke

Bore size(mm)	Stroke type	90°	180°	Total stroke(90°/180°)			
25	Rotation stroke	14	20	26			
32	Clamping stroke	12	6	26			
40	Rotation stroke	15	21	27			
40	Clamping stroke	12	6	27			
50	Rotation stroke	15	21	29			
63	Clamping stroke	14	8	29			

Ordering code



Note: When the thread is standard, the code is blank.

Inner structure and material of major parts

NO.	Item	Material	NO.	Item	Material
1	Screw	Carbon steel	12	Fixed pin	S45C
2	Rocker	Carbon steel	13	Back cover	Aluminum alloy
3	Rod packing	NBR	14	O-ring	NBR
4	O-ring	NBR	15	Push block	SCr440
5	Piston rod	S45C	16	Bushing	SCr440
6	Body	Aluminum alloy	17	Steel ball	Carbon steel
7	Piston seal	NBR	18	Rotary axis	SCr440
8	Wear ring	Wear resistant matrial	19	Bumper	PTFE
9	Screw	Carbon steel	20	Screw	Carbon steel
10	Screw	Carbon steel	21	Nut	Carbon steel
11	O-ring	NBR			

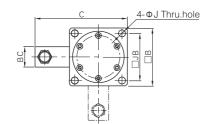
Cylinder SC SC(Big)

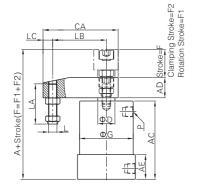
QCK NCK1

Dg-Pnetic®

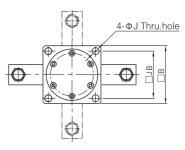
Cylinder SC

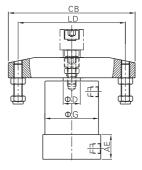
SC(Big) SCF SU SUF S SIF DNC QGB QGBZ NCQ2 NCQ2(Big) NCQ2(Long) NCQS NCOM NRC SDA ADVU ACE(AND) MA M


NCM2 NC.12 NCG1 NCJP TD TN(TDA) NCXS NCXSW NMGP NMGG NCU NCU. NCY3B NCY3R NCY1S NCY1L STM NMXH

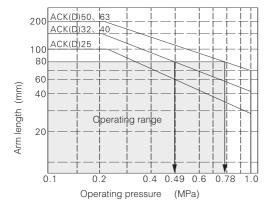

NMXS NMXC NMHZ2 NMHC2 NMHL2 NMHY2 NMHT2 NMHW2 NMHF2 NMHS2 NMHS3 NMHS4 NMRHQ NMSQ NCRA1 NCRQ2 NCRB2

SRC OCK NCK.


Dimensions


ACK

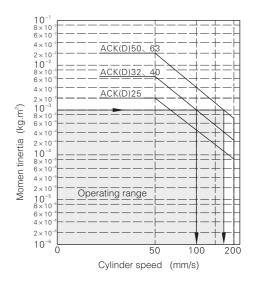
ACKD



Bore size\Item	Α	AC	AD	AE	В	вс	С	CA	СВ	D	F(90°/180°)	F1(90°)	F1(180°)	F2(90°)	F2(180°)	G	J	JB	L	LA	LB	LC	LD	Р
25	85	65	16	23	40	16	58	48	76	14	26	14	20	12	6	35	4.5	30	M6×1.0	29.5	30	8	60	M5×0.8
32	95	73	19	23	54	19	86	70	118	16	26	14	20	12	6	50	6.5	44	M8×1.25	37.5	50	9	100	1/8"
40	97	74	19	26	58	19	88	70	118	16	27	15	21	12	6	55	6.5	48	M8×1.25	37.5	50	9	100	1/8"
50	109.5	80	25.5	26	68	25.5	114	93	160	20	29	15	21	14	8	60	8.5	55	M10×1.5	45	70	10	140	1/8"
63	115.5	86	25.5	30	82	25.5	121	93	160	20	29	15	21	14	8	70	8.5	64	M10×1.5	45	70	10	140	1/8"

How to select product

- 1. When arms are to be made separately, their length and weight should be within the following range.
- 2. Allowable bending moment: Use the arm length and operating pressure within graph(1) for allowable bending moment loaded piston rod.



Example: When arm length is 80mm, pressure should be less than

ACK32/40: 0.59MPa ACK50/63: 0.78MPa

3. Moment of inertia:

When the arm is long and heavy, damage of internal parts may be caused due to inertia. Use the inertia moment and cylinder speed within graph(2) based on arm requirement.

Example: When arm's moment of inertia is $10^{-3} \text{Kg} \cdot \text{m}^2$ cylinder

speed should be less than

ACK32/40: 100mm/s ACK50/63: 170mm/s

Note: The average speed of piston=the highest speed of piston/1.6

Dg-Pnetic®

4. Moment of inertia of cylinder's arm when rotating based on its rotary axis, shown in graph(3).

Model	Moment of inertia (Kg·m²)
ACK25 with single arm	2.006×10⁻⁵
ACK25with double arms	7.651×10 ⁻⁴
ACK32\40 with single arm	1.271×10 ⁻⁴
ACK32\40 with double arms	4.148×10 ⁻⁴
ACK50\63 with single arm	9.614×10 ⁻³
ACK50\63with double arms	1.888×10 ⁻³

5. Calculation reference:

5.1) Moment of inertia of arm(I₁): Refer to the graph(3) after the cylinder bore diameter is determined.

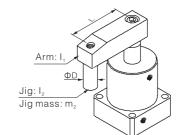
5.2) Moment of inertia of jig (I_2): According to shape of the jig and the next item 6 "Calculation for moment of inertia", pick out a proper formula for calculation. The jig shown on the right graph is a cylinder, its formula of moment of inertia is:

 $I_2 = (m_2 * D * D)/8 + m_2 * L * L$

When ACK32 is selected: L=0.05m(arm length);

If D=0.04m

 $m_2=0.4kg$


From graph(3): $I_1 = 1.271 \times 10^{-4} (kg \cdot m^2)$

By Calculation: $I_2 = (m_2 * D * D)/8 + m_2 * L * L = (0.4 * 0.04 * 0.04)/8 + 0.4 * 0.05 * 0.05$

 $=10.8\times10^{-4}(kg \cdot m^2)$

Total value: $I = I_1 + I_2 = 12.071 \times 10^{-4} = 1.2071 \times 10^{-3} (kg \cdot m^2)$

According to graph(2), the highest speed of the cylinder should be less than 95 mm/s; According to graph(1), it can be used under a pressure of 0.9Mpa. The average speed of piston=the highest speed of piston/1.6=59 mm/s.

6. Calculation for moment of inertia

Diagra	am	Calculation formula of moment of inertia	Diagram	Calculation formula of moment of inertia				
1. Thin bar Position of rotary axis: Vertical to the bar and through the end	a, a	$I = \frac{m_1 a_1^2 + m_2 a_2^2}{3}$	4. Thin rectangular plate (Cube) Position of rotary axis: Parallel to side b and through the center of gravity	$I = \frac{ma^2}{12}$				
2. Thin bar Position of rotary axis: Vertical to the bar and through the center of gravity		$I=\frac{ma^2}{12}$	5. Thin rectangular plate (Cube) Position of rotary axis: Vertica to the plate and through the end	$I=m_{1}\times\frac{4a_{1}^{2}+b^{2}}{12}+m_{2}\times\frac{4a_{2}^{2}+b^{2}}{12}$				
3. Load at the end of lever arm	a, m,	$I=m_{1} \times \frac{a_{1}^{2}}{3} + m_{2} \times a_{2}^{2} + k$ $k=m_{2} \times \frac{2r^{2}}{5}$	6. Thin rectangular plate (Cube) Position of rotary axis: Through the center of gravity and vertical to the plate(Same as also thick rectanglaur plate)	$I = \frac{ma^2 + mb^2}{12}$				

SCT SCF SU SUF SI SIF DNC QGB QGBZ NCQ2 NCQ2(Big) NCQ2(Long) NCQS NCQM NRQ SDA ADVU ACE(AND) MAL MA MI NCM2 NC.I2 NCG1 NCJP TD TN(TDA) NCXS NCXSW NMGP NMGG NCU NCUJ NCY3B NCY3R NCY1S NCY1L STM NMXH NMXS NMXQ NMHZ2 NMHC2 NMHL2 NMHY2 NMHT2 NMHW2 NMHF2 NMHS2 NMHS3 NMHS4 NMRHQ NMSQ NCRA1 NCRQ2 NCRB2

SC SC(Big)

QCK NCK1